UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level | | = | = | |---|---|---| | | | | | ı | | | | ١ | | | | ١ | | • | | | | | | ١ | | • | | 1 | | | | ۰ | | | | ١ | | ≣ | | | | | | l | = | ■ | | | | ■ | | ١ | _ | = | | | | = | | • | | | | | | ≣ | | | | | | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 9701/04 Paper 4 Structured Questions May/June 2007 1 hour 45 minutes Candidates answer on the Question Paper. Additional Materials: Data Booklet # **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid DO NOT WRITE IN ANY BARCODES. ## Section A Answer all questions. #### Section B Answer all questions. You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | | |--------------------|--|--| | 1 | | | | 2 | | | | 3 | | | | 4 | | | | 5 | | | | 6 | | | | 7 | | | | 8 | | | | 9 | | | | Total | | | | | | | This document consists of 16 printed pages. ## Section A Answer all questions in the spaces provided. - www.PapaCambridge.com 1 Zinc chloride is one of the most important compounds of zinc. It is used in dry cell batteries, as a flux for soldering and tinning, as a corrosion inhibitor in cooling towers and in the manufacture of rayon. - (a) Draw a fully labelled diagram to show how you could use a standard hydrogen electrode to measure the standard electrode potential, E^{θ} , of zinc. [6] (b) The electrolysis of zinc chloride can give different electrode products, depending on the conditions used. Suggest the products formed at each electrode in the following cases. One space has been filled in for you. | conditions | product at anode | product at cathode | |--|------------------|--------------------| | $ZnCl_2(I)$ | chlorine | | | ZnCl ₂ (concentrated aqueous) | | | | ZnCl ₂ (dilute aqueous) | | | [3] (c) Use the following data, together with relevant data from the Data Booklet, to construct a Born-Haber cycle and calculate a value for the lattice energy of zinc chloride. | standard enthalpy change of formation of ${\rm ZnC}\it{l}_{2}$ | −415 kJ mol ^{−1} | |--|---------------------------| | standard enthalpy change of atomisation of Zn(s) | +131 kJ mol ⁻¹ | | electron affinity per mole of chlorine atoms | −349 kJ mol ^{−1} | lattice energy =kJ mol⁻¹ [3] (d) Zinc is an essential element for plant and animal life. It is often administered in the of a chelate, which is a complex between a metal ion and a polydentate ligand. The rate of the reaction between zinc ions and the ligand 4-(2-pyridylazo)resorcinol, PAR, has been studied. Both PAR and its zinc complex absorb radiation in the UV-visible region. The figure below shows their absorption spectra. | | varies with [Zn ²⁺ (aq)]. | | |------|---|---------| (ii) | Describe a reaction you could carry out to show that PAR is a phenol. | | | | | | | | |
[7] | Devise a suitable experimental technique for studying how the rate of this reaction | | | the state of s | |----|------------|--| | | | 4 | | a) | Writhea | te an equation showing the reaction that occurs when calcium nitrate, Ca(Noted | |) | | cribe and explain the trend in thermal stability of the nitrates of the Group II nents. | | | | | | | | | | | | [3] | |) | gas
The | the heating ammonium nitrate, NH_4NO_3 , in a test tube produces a mixture of two es A and B . No residue remains in the tube. mass spectrum of gas A contains peaks at m/e (mass number) values of 16, 17 | | | (i) | 18, whereas that of gas B has peaks at <i>m</i> /e values of 14, 16, 28, 30 and 44. Identify the peaks in the mass spectra, and suggest the molecular formulae of the gases A and B . | | | | | | | | | | | | | | | 410 | | | | (ii) | Hence suggest an equation for the thermal decomposition of ammonium nitrate. | | | | [5] | | | | [Total: 9] | For Examiner's Carbon forms two stable oxides, CO and CO₂. Lead forms three oxides: yellow PbO₂ and red Pb₃O₄. (a) Carbon monoxide burns readily in air. Heating black lead oxide produces oxygen gas, leaving a yellow residue. | | (i) | Suggest a balanced equation for each reaction. | |-----|-------|--| | | | | | | (ii) | Explain how these two reactions illustrate the relative stabilities of the +2 and +4 oxidation states down Group IV. | | | | [3] | | (b) | Red | lead oxide contains lead atoms in two different oxidation states. | | | (i) | Suggest what these oxidation states are, and calculate the ratio in which they occur in red lead oxide. | | | | | | | (ii) | Predict the equation for the action of heat on red lead oxide. | | | | en red lead oxide is heated with dilute nitric acid, HNO ₃ , a solution of lead(II) nitrate rmed and a black solid is left. | | | (iii) | Suggest an equation for this reaction. | | | (iv) | Explain how this reaction illustrates the relative basicities of the two oxidation states of lead. | | | | | | | | [5] | | (c) | Both | tin(II) oxide and tin(IV) oxide are amphoteric. | | | | e a balanced equation for the reaction between tin(II) oxide and aqueous sodium oxide. | | | | [1] [7otal: 9] | **4** The following passage is taken from an A level Chemistry text book. "In an isolated atom, the five d-orbitals have the same energy. In an octahedral complex ion, however the presence of the ligands splits the five orbitals into a group of three and a group of two. These two groups have slightly different energies." (a) Use the following sets of axes to draw the shape of **one** d-orbital in **each** of the two groups mentioned above. [2] | (n) | groups of different energy, and explain whether the two-orbital group or the three-orbital group has the higher energy. | |-----|---| | | | | | | | | | | | | | | [3 | www.PapaCambridge.com (c) The following table lists the colours and energies of photons of light of wavelengths. | wavelength
/nm | energy of photon | colour of photon | |-------------------|------------------|------------------| | 400 | high | violet | | 450 | ↓ | blue | | 500 | lower | green | | 600 | ↓ | yellow | | 650 | low | red | The visible spectra of solutions of two transition metal complexes C and D are shown in the diagram below. A list of possible colours for these complexes is as follows. yellow blue red green Choose one of these words to describe the observed colour of each solution. solution C solution D In which complex, C or D, will the energy gap between the two groups of orbitals be (ii) the larger? Explain your answer. [3] [Total: 8] The following scheme shows some reactions of methylbenzene. 5 (a) Suggest reagents and conditions for reactions I to IV. | T | | |-----|-----| | II | | | III | | | IV | | | | [4] | **(b)** What *type of reaction* is each of the following? | reaction I | |--------------| | reaction III | [2] (c) Compound F can be converted into 2-phenylethylamine in a two-stage Suggest a structure for the intermediate, H, in the box below, and suggest reagents conditions for the steps V and VI. | reagents and conditions for step V | | |-------------------------------------|-----| | reagents and conditions for step VI | [4] | (d) The compounds E, F and G react at different rates with nucleophilic reagents. Draw structures for the products of each compound with the following reagents. If no reaction occurs, write "no reaction" in the box. | | reagent | | | | | | |----------|------------|--------------|--|--|--|--| | compound | cold water | hot NaOH(aq) | | | | | | E | | | | | | | | F | | | | | | | | G | | | | | | | www.PapaCambridge.com 6 Chemists use skeletal or partial-skeletal formulae to represent larger structures. For e the structure $$\begin{array}{c|ccccc} & CH_3 & OH \\ H_2C & CH_2 & CH_2 \\ H_2C & CH_2 & CH_2 \\ \end{array}$$ may also be represented as follows. Oestradiol is one of the hormones that controls the reproductive cycle in female mammals. - (a) (i) On the above structure of oestradiol, circle one chiral centre. - What is the total number of chiral centres in the oestradiol molecule? (ii) [2] - (b) Complete the following part-structures (which have the -OH groups removed) to show the products obtained when oestradiol (above) is reacted with the stated reagents. - sodium metal (i) (ii) Br₂(aq) (iii) NaOH(aq) (iv) CH₃COC*l* (v) hot acidified K₂Cr₂O₇ [7] [Total: 9] # Section B – Applications of Chemistry Answer all questions in the spaces provided. www.PapaCambridge.com 7 (a) (i) In a protein, amino acids are joined together by a process called condensation polymerisation. Addition polymerisation is used in some synthetic polymers, such as poly(propene). > State **two** important differences between *condensation polymerisation* and *addition* polymerisation. |
 | |------| | | | | Using the amino acids glycine and alanine shown, draw the displayed formula of the dipeptide ala-gly, clearly labelling the peptide link. $$\begin{array}{c} H \\ | \\ H_2 N - C - CO_2 H \\ | \\ H \\ \text{glycine} \end{array}$$ $$\begin{array}{c} \mathsf{H} \\ | \\ \mathsf{H_2N-C-CO_2H} \\ | \\ \mathsf{CH_3} \end{array}$$ alanine [4] (b) The diagram below shows a section of DNA. Identify the blocks labelled X, Y and Z. Υ [2] | m. | | |--------------|--------------------------| | www.PapaCant | For
Examiner's
Use | | Talty | Stick | | ` | Se. COM | | | | (c) The table below shows the 3-base codes used by RNA. | UUU | phe | UCU | ser | UAU | tyr | UGU | cys | |--------------------------|------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | UUC | phe | UCC | ser | UAC | tyr | UGC | cys | | UUA | leu | UCA | ser | UAA | stop | UGA | stop | | UUG | leu | UCG | ser | UAG | stop | UGG | trp | | CUU | leu | CCU | pro | CAU | his | CGU | arg | | CUC | leu | CCC | pro | CAC | his | CGC | arg | | CUA | leu | CCA | pro | CAA | gln | CGA | arg | | CUG | leu | CCG | pro | CAG | gln | CGG | arg | | AUU
AUC
AUA
AUG | ile
ile
ile
met/
start | ACU
ACC
ACA
ACG | thr
thr
thr
thr | AAU
AAC
AAA
AAG | asn
asn
lys
lys | AGU
AGC
AGA
AGG | ser
ser
arg
arg | | GUU | val | GCU | ala | GAU | asp | GGU | gly | | GUC | val | GCC | ala | GAC | asp | GGC | gly | | GUA | val | GCA | ala | GAA | glu | GGA | gly | | GUG | val | GCG | ala | GAG | glu | GGG | gly | (i) What amino acid sequence would the following base code produce? (You may use abbreviations in your answer.) | | | -AUGUCUAGAGACGGGUAA- | |----|------|---| | | | | | | (ii) | What would be the effect on the amino acid sequence if a mutation caused the base G at position 13 in the sequence to be replaced by U? | | | | | | | | [3] | | d) | (i) | Name a disease which results from a genetic defect. | | | (ii) | Explain how the genetic defect can bring about your named disease. | | | | | | | | | [Total: 13] [3] For Examiner's Use | | nyar | olysis | of a polypeptide | | ırate amino a | cids which a | ire produ | nds on pH. | |-----|------------------------------------|---|---|---|--|--|------------------|--| | | Usin | g glyd | cine as an exam | ple, explain w | hy the result o | of electrophor | esis depe | nds on pH. | [3] | | (b) | of th | e expo | am below shows
eriment a spot o
ed in the middle
the positions sho | of a solution co
of the plate. | ontaining a mix
Following ele | cture of amino | acids P , | Q, R and S | | | befor | re | + | | • | | | _ | | | after | | + | | • | • (| | _ | | | | | Р | | Q | R | S | | | | | | | | | | | | | | (ii) | Expla

Assui | h amino acid exi
in your answer.
ming amino acid
n is likely to be th | ds R and S ca | rry the same o | charge when i | n this buff | er solution, | | | (ii) | Expla

Assui | nin your answer. | ds R and S ca | rry the same o | charge when i | n this buff | er solution, | | (c) | (ii) Amir This pape | Expla Assure which no aci involver and ugh 90 | nin your answer. | ds R and S cane larger mole | rry the same of ecule? Explain when the column the column the column the column the column the paper | charge when i
your answer.
mensional pa
ner of a piec | n this buff | [2] natography. natography ied, turned | | (c) | (ii) Amir This pape throu one (i) | Assur which | in your answer. ming amino acid is likely to be the ves putting a special allowing a sole of and placed in the method. | ds R and S cane larger mole separated by ot of the mixt vent to soak a second sol | rry the same of ecule? Explain wording two-didure on the colup the paper vent. This met | mensional particle of a piece. The paper industrial between the control of co | n this buff | natography.
natography
natography
ied, turned
ation than a | www.PapaCambridge.com The table below shows the $R_{\rm f}$ values for some amino acids in two (ii) solvents. | amino acid | R _f solvent 1 | R _f solvent 2 | |------------|--------------------------|--------------------------| | A | 0.1 | 0.2 | | В | 0.0 | 0.4 | | С | 0.3 | 0.0 | | D | 0.8 | 0.9 | | E | 0.6 | 0.5 | Use the grid below to plot the positions of the amino acids after two-dimensional paper chromatography using solvent 1 followed by solvent 2. - Which amino acid travelled fastest in **both** solvents? - (iv) Which amino acid did not move at all in solvent 2? [5] [Total: 10] 9 (a) Graphite and buckminsterfullerene are two structural forms of carbon. By refe diagrams of their structures, suggest three differences in their properties. graphite | buc | km | ın | ste | rtu | 116 | ere | ne | |-----|----|----|-----|-----|-----|-----|----| | | [3] | |-----|--| | (b) | Nano-sized 'test-tubes' can be formed from carbon structures. What is the relationship between the parts of these 'test tubes' and the two structural forms of carbon shown above? | | | | | | | | | | | | [3] | | (c) | Many modern sunscreens contain nano-sized particles of titanium dioxide. This substance does not absorb ultraviolet radiation. | | | Suggest how these nano-particles are able to protect skin from ultraviolet radiation. | | | | [Total: 7] Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.